Archivo de la categoría: Sin categoría

Plátanos y radiactividad

platano¿Qué tienen que ver los plátanos y la radiactividad? Bueno, un plátano es una fruta que se cultiva en Canarias además de en otros muchos lugares del mundo y la radiactividad es un fenómeno que consiste en la transformación espontánea de un núcleo (sobre núcleos ya hablamos en la entrada “El núcleo y sus modelos”) que conduce a un cambio en su composición o en su energía interna mediante la emisión de partículas o radiación electromagnética. Hasta aquí no parece que tengan mucho que ver. Pero, entonces, ¿por qué empezamos esta entrada con la fotografía de un plátano? Pues porque los plátanos son radiactivos.

Sí, el plátano que te has comido a media mañana o para acabar el almuerzo emite radiación. Antes y después de entrar en tu estómago. De hecho, se han inventado conceptos como “dosis equivalente a un plátano” que, en casos de fugas radiactivas, son utilizados para explicar el nivel de radiación a la población. Pero no hay que preocuparse. En nuestro planeta existen de manera natural los emisores radiactivos, nosotros también emitimos radiación e incluso el agua o la cerveza que nos bebemos. Y, ahora que vemos radiación por “everywhere”, intentemos explicar con un poco más de detalle los tipos más frecuentes de desintegraciones nucleares, las conocidas desintegraciones α, β y γ, así como la fisión y la emisión de nucleones.

Desintegración Alfa

alfaalfa2

Como vemos en la imagen, la desintegración alfa consiste en la emisión de núcleos de Helio (las llamadas partículas α) por núcleos pesados. Hemos puesto el ejemplo del Uranio que emite una partícula alfa, disminuyendo su número de nucleones en cuatro (dos protones y dos neutrones) y transmutando en Torio.

En los núcleos la repulsión electrostática va aumentando a medida que el número de protones se va haciendo mayor. En los átomos con Z>82 la repulsión coulombiana empieza a ser capaz de romper la estabilidad nuclear. Y entonces, para determinados núcleos, ocurre la desintegración alfa. El motivo de que la partícula emitida sea un núcleo de helio en vez de cualquier otra partícula tiene que ver con la enorme energía de enlace que poseen dichas partículas.

Este tipo de desintegración es una prueba del conocido “efecto túnel”. Hablemos un poco de qué es esto. En principio, tenemos nuestra partícula en un pozo de potencial, debido al núcleo, como el siguiente:

particulas clasicas dentro y fuera de la barrera

La partícula tiene una energía positiva pero no suficiente para traspasar la barrera de potencial desde el punto de vista clásico. Debería, por tanto, quedarse confinada en el núcleo. Sin embargo, se observa experimentalmente que escapa. Lo que ocurre es que este fenómeno no puede estudiarse clásicamente. La física cuántica nos dice que la partícula α sí puede abandonar el núcleo porque su función de onda tiene una expresión tal que la probabilidad de encontrar a la partícula fuera del pozo no es cero. Por tanto, lo que tenemos en el caso de la desintegración α es una prueba del llamado “efecto túnel”.

Desintegración Beta

beta

La desintegración beta comprende tres procesos nucleares. En uno de ellos se emiten electrones, en otro positrones y en el tercero se produce la captura de un electrón por parte de núcleos alejados de la línea de estabilidad. En un momento explicaremos qué es esta línea.

En la figura anterior aparecen los casos del Carbono 14 y del Nitrógeno 13 como ejemplos de desintegraciones \beta^+ y \beta^- respectivamente .

La línea de la estabiliddad es algo que aparece cuando representamos gráficamente en tres dimensiones, para núcleos, el número neutrónico frente al número atómico y, en el tercer eje, la masa. En dos dimensiones, al representar N frente a Z tenemos lo siguiente:

belt of stability

Observamos que los núcleos estables se encuentran en la zona en la que Z≅N para A<40. A partir de A∼40 el cociente N/Z va aumentando poco a poco, hasta alcanzar valores de N/Z∼1,56.

El proceso de desintegración beta es una interacción débil en el que uno de los nucleones que se encuentra en exceso (neutrón o protón) se transforma en el otro, emitiendo un electrón, o un positrón de forma que se conserve la carga eléctrica. En el caso de la captura electrónica un protón del núcleo captura un electrón dejando un hueco en la estructura electrónica. Este hueco es llenado inmediatamente por otro electrón y habrá emisión de radiación electromagnética (rayos X) procedente de la corteza atómica.

En todos los casos aparece un neutrino, o su antipartícula, para cumplir con la conservación de la energía y el momento angular total. De hecho, la existencia de esta partícula se postuló en los años 30 para hacer cumplir con el principio de consevación de la energía, porque sin ella, no era posible. Lo que ocurría era que el espectro energético de los electrones emitidos en la desintegración era contínuo, con energías que iban desde cero hasta un cierto valor máximo. Pero sin neutrinos, para cumplir con la conservación de la energía tendría que ocurrir que el electrón fuese emitido siempre con la misma energía. Ya que eso no pasaba, había que buscar soluciones. Se llegó a proponer que la energía no tenía que conservarse, pero posteriormente, Pauli propuso que en la desintegración era emitida además, una partícula neutra (recordemos que la carga sí se conservaba) aunque dicha partícula no se hubiese detectado aún. No fue hasta los años 50 cuando por fin, se produjo su descubrimiento.

En la entrada Neutrino history, what’s NEXT? – ¿Neutrinos? están explicados con más detalles estos conceptos.

En la mayoría de los casos, el núcleo que tenemos tras la desintegración queda en un estado excitado, que no es el estado en que quizás algunos estáis pensando, sino un estado energético que no es el más bajo posible. En esos casos lo que ocurre es que, a continuación, tiene lugar una desintegración gamma que deja al núcleo en un estado de menor energía. Si este estado es el de menor energía posible hablaríamos entonces de estado fundamental.

Si no hay desintegración gamma posterior, al núcleo se le llama emisor beta puro.

Desintegración Gamma

gamma

Los núcleos pueden presentar distintos estados cuánticos con valores de energía discretos. Cuando el núcleo se encuentra en un nivel de energía excitado, como acabamos de contar, puede pasar a un nivel de menor energía emitiendo fotones de una cierta frecuencia. A esta radiación se la llama radiación gamma. Es decir, el núcleo no cambia su composición sino que los nucleones que lo forman experimentan una transición entre dos niveles energéticos, algo parecido a las desexcitaciones de electrones en átomos.

Y, ¿por qué estaría un núcleo en un estado excitado? Pues, por ejemplo, porque sea un núcleo resultante de una desintegración alfa o beta o de una reacción nuclear.

La radiación gamma es, por tanto, una radiación de naturaleza electromagnética de alta frecuencia, alta energía y muy penetrante, bastante más que las radiaciones alfa y beta, como vemos en la siguiente imagen:

penetracion

Los fotones de las desintegraciones nucleares tienen energías del orden de 10^6 veces la de los fotones del espectro visible emitidos por átomos excitados. Es, por tanto, una radiación ionizante.

Los núcleos también pueden desexcitarse por otros procesos, aunque son menos probables. Uno de ellos es la conversión interna. En este caso el exceso de energía se cede a un electrón de la corteza atómica, que sale “disparado” del átomo.

Como mencionamos al principio, existen más tipos de desintegraciones nucleares. Una de ellas es la fisión espontánea. Este tipo de desintegración tiene lugar en núcleos con número másico elevado debido a las fuerzas de repulsión eléctricas, suele ocurrir en elementos con número atómico superior al del Uranio (transuránidos) y es uno de los motivos por los que no pueden existir núcleos estables con un número másico muy grande.

Esta entrada está llegando a su fin y aún no hemos visto ninguna ecuación. Vamos a poner remedio a esto, inmediatamente, con la fórmula matemática para la desintegración radiactiva.

Supongamos que tenemos N átomos de una sustancia radiactiva y queremos saber cómo varía, con el tiempo, su número. Pues resulta que el número de núcleos que se desintegran por unidad de tiempo es proporcional al número de núcleos que tenemos. Luego podemos escribir la siguiente ecuación:

desintegracionradiactiva

donde λ es la constante de desintegración que es una característica de cada isótopo y no depende de condiciones externas. Resolviendo obtenemos la expresión que aparece en la parte inferior de la imagen, la llamada ley de desintegración radiactiva. Como vemos, el comportamiento es exponencial.

Se definen también magnitudes como el periodo de semidesintegración (tiempo en el que el número de núcleos se ha reducido a la mitad) o la vida media (tiempo en el que el número de núcleos se ha reducido en un factor e o valor medio del tiempo que tarda un conjunto de núcleos en desintegrarse).

Vamos a dejarlo aquí, por ahora, pero la historia continuará.

¡Hasta pronto!

 

 

 

 

 

 

 

 

Evolución al extremo

A la tercera va la vencida. Con esta entrada terminaremos la serie sobre robótica evolutiva. Las dos entradas anteriores se centraron en cómo un robot puede aprender comportamientos que nosotros deseamos, combinando aprendizaje por refuerzo con redes neuronales y algoritmos genéticos. Ahora, veremos que algunos investigadores han aplicado las ideas evolutivas hasta sus últimas consecuencias.

Votar en los Premios Bitacoras.com

Diseño de robots por evolución

Ya hemos comentado que la robótica evolutiva, al margen de las técnicas utilizadas, trae un cambio de paradigma a la robótica: ¿para qué programar a mano un robot, si él mismo puede aprender? Pues bien, en vez de quedarse en la mera idea de programar comportamientos, hay quien se ha preguntado por qué deberíamos seguir diseñando robots. Es decir, por qué tenemos que pensar nosotros si un robot dado necesita un par de brazos, unas ruedas y una configuración concreta para llevar a cabo una tarea.

Si miramos a la naturaleza, la evolución ha esculpido todas las formas de vida, no solo sus comportamientos, sino también su morfología. La variedad de seres vivos es impresionante, siendo cada uno de ellos una solución para sobrevivir y reproducirse en sus entornos. Y la verdad es que las soluciones generadas por evolución funcionan muy muy bien.

Algunos investigadores han intentado reproducir esos resultados que vemos en la naturaleza. Claro, hacer eso con robots reales es algo muy complicado hoy en día. Pero por suerte, podemos construir simuladores en los que las condiciones son las que nosotros queremos. Podemos definir unas piezas básicas, unas articulaciones para juntar esas piezas e inducir movimentos, podemos definir la gravedad, la fricción y otros aspectos que hagan que los robots simulados se asemejen a la realidad.

Esta corriente de hacer evolucionar robots virtuales en simuladores nos ha traído ya resultados bastante curiosos. Mirad bien el siguiente video. Veréis cómo van evolucionando unas criaturas extrañas con el objetivo de desplazarse de forma más rápida por su entorno simulado. Algo muy interesante del video es que comparan las morfologías de distintas generaciones, enseñando claramente cómo se da una evolución en la forma de la criatura artificial consiguiendo una mayor eficiencia. El “bicho”, además, es puesto a prueba en terrenos desiguales. Os dejo con el video:

A continuación os pongo otro ejemplo de hacer evolucionar criaturas virtuales. En este caso, se pueden ver criaturas para entornos acuosos y terrestres. Criaturas cuyo objetivo es perseguir una señal luminosa que un usuario puede ir moviendo por el entorno virtual. Pero lo que a mí más me gusta es la competición que se montan entre distintas criaturas evolucionadas para poder ver quien de ellas puede hacerse con una pieza cuadrada (a partir del minuto 2:10). Vamos, como si esto fuera Pokemon. Y la criatura que más me gusta es ésa que olvidándose de la pieza ¡se centra en atacar directamente al oponente! Lo podéis ver en el minuto 3:20 más o menos:

En el caso de las competiciones, no solo evoluciona la morfología de las criaturas, sino también las estrategias que usan para ganar. A esta clase de evolución por competición, se le llama co-evolución.

Esto no es solo un juego

Puede quedar la impresión de que lo que hemos mostrado hasta ahora es solo un juego para unos cuantos investigadores ociosos. No es así. Es investigación básica sobre una rama de la robótica que además de generar resultados interesantes, genera un conocimiento sobre algoritmos evolutivos muy importante. En un curso de robótica evolutiva al que asistí, el ponente nos explicó que ya habían usado estas técnicas de diseño para un robot que tenía que limpiar cascos de barcos. Los hacían evolucionar en entornos simulados y cuando llegaban a una solución buena, construían el modelo real y lo mejoraban probándolo en situaciones reales. Lamentablemente, no he podido encontrar información sobre ese proyecto.

Como un ejemplo de cómo estas criaturas virtuales evolucionadas pueden trarse al mundo real, tenemos el proyecto Golem. En él intentan crear máquinas que se puedan mover de forma eficiente en la realidad. Para ello, definen unas piezas básicas en el simulador, con unas articulaciones específicas. Esas piezas, tienen pequeñas redes neuronales integradas que son las que implementan la estrategia de control de las articulaciones. Haciendo evolucionar esas redes neuronales y la configuración de distintas piezas, llegan a crear robots reales que se mueven en entornos reales. El salto entre la criatura virtual y el robot real se realiza gracias a impresoras 3D. Pero mejor lo veáis vosotros mismos:

Todavía queda un enorme trabajo para aplicar de forma generalizada estas estrategias de diseño robótico. Éste es un área de la robótica al que no se le dedican tantos esfuerzos como a otros, pero poco a poco se van conseguiendo resultados asombrosos. La idea en sí a mí me parece espectacular. Espero que a vosotros también os haya gustado.

Nos seguimos leyendo…

Intoxicación por ricina #QuímicaDeBreakingBad1

Breaking Bad - Veneno Mortal

 

*Esta entrada NO CONTIENE spoilers de la serie Breaking Bad, NINGUNA de las referencias explícitas a la serie o sus personajes desvela parte o totalidad de la trama.

 

Todos los seriéfilos conocen de la habilidad del Dr. Walter White para sintetizar compuestos químicos altamente puros que sobrepasa la realidad. Bajo un conocimiento tremendamente amplio en química inorgánica y una técnica impecable, al protagonista de Breaking Bad lo mismo le da trabajar hasta tarde para producir metanfetamina en una caravana que en obtener  un explosivo o tóxico para salir de alguno de sus típicos apuros.

 

En varios capítulos, el Dr White propone a su compañero de fechorías – el narcotraficante Jesse Pinkman – envenenar a algún capo de la droga con ricina. ¿Cómo? Muy fácil, aunque se trate de dos moléculas completamente distintas, los polvos de ricina y los de metanfetamina son indiferenciables a simple vista. Así pues, algo tan común o usual como la distribución de droga entre la competencia puede acabar con un fatal desenlace si se mezclan ambas sustancias.

En esta entrada vamos a ver que es la ricina, su fabricación y su efecto. También nombraremos algunos de los usos o potencialidades que tiene.

 

La ricina es una proteína extraída de las semillas de la planta de Ricino - Ricinus communis -. Aunque su proceso de extracción tiene una patente, el método es muy parecido al de de otras proteínas, por ejemplo la de la planta de soja. El producto final es un polvo fino de color blanco, inodoro e insípido. Como podréis comprobar en la serie, es una sustancia totalmente irreconocible de la metanfetamina.

 

Castor beans are photographed December 16, 2010 in New York City. The beans, also known by its scientific name of Ricinus communis, are the main ingredient in making the poison ricin. (Photo illustration by Yvonne Hemsey/Getty Images)

Semillas de ricino.

 

La toxina de la que hablamos es una proteína de unión a ribosoma que lo inactiva. El ribosoma es el orgánulo encargado de la fabricación de otras proteínas para la célula, de manera que cuando queda completamente bloqueado por causa de la obstrucción de la ricina se inhibe la síntesis proteica.

A nivel fisiológico los primeros efectos notables de su ingesta son vómitos, diarrea y deshidratación. ¿A qué se deben? El hígado no podrá sintetizar las proteínas que se encargan de los procesos básicos de digestión por lo que todo lo ingerido se rechaza sin ser completamente digerido. La deshidratación es un efecto secundario a los dos primeros síntomas que hemos comentado.

 

Ribosoma procesando una hebra de ARN.

 

Los efectos no son los mismos cuando se inhala puesto que las células expuestas – por tanto, las afectadas – pertenecen a otros órganos y tejidos. Su aparición se hace incluso todavía más notable, en un período de hasta 6 horas después de administrarse se puede desarrollar tos con sangre debido a la disfunción alveolar producida en todo el sistema respiratorio.

Si bien hasta aquí parece que tenemos indicios de una gripe común – en lo que refiere a su ingesta – pasados tres o cuatro días y si el paciente no ha fallecido se acusarán los primeros síntomas a la par que aparecerán hemorragias intestinales. Normalmente, la intoxicación por ricina suele causar la muerte antes de los diez días.

 

Estructura de la ricina.

 

La dosis mortal de ricina para un humano puede extraerse de entre 4 y 8 semillas, siendo mortal en todas sus posibles formas de administración. No existe antídoto conocido, a pesar de que hace unos años se desarrollara un método para producir la antitoxina, la patente fue retirada después de su proceso de fabricación se pusiera en duda.

Sorprendentemente, la toxina del ricino se está probando como uso médico en el tratamiento del cáncer y en el desarrollo de vacunas. También ha sido utilizada en el presente y último siglo como arma química.

Así pues, aunque la cara angelical del Sr Walter White diga todo lo contrario, el químico más afamado de las series americanas sabía lo que se traía entre manos. Si queréis saber más sobre esta historia y como acaba este baile de moléculas os recomiendo que veáis la serie. Son 5 temporadas repletas de guiños químicos y un argumento envolvente del que no os podréis deshacer.

 

Walter White con un vial de ricina. 

 

 

***NOTA IMPORTANTE: LA FABRICACIÓN DE METANFETAMINA Y/O RICINA ES UNA ACTIVIDAD ILEGAL.

 

Post escrito por Adrián Villalba, estudiante de Bioquímica y colaborador en blog AlbaCiencia.

 

 

Además añadir:

“Esta entrada participa en el XXXIX Carnaval de Química alojado en el blog ‘gominolasdepetróleo‘”

 

Una paloma cuántica que yo tenía

inicial2Ha salido otro artículo en el que se muestra que la cuántica tiene la dichosa manía de patear nuestro sentido común.

Esta vez es el turno del principio del palomar.

En esta entrada vamos, en un primer paso, a refrescar nuestra memoria acerca de este principio, muy brevemente porque hay sitios donde ha sido tratado mucho mejor de lo que podríamos hacerlo aquí.  Posteriormente discutiremos el artículo colgado en arXiv:

The quantum pigeonhole principle and the nature of the quantum correlations (El principio del palomar cuántico y la naturaleza de las correlaciones cuánticas)

donde se describe como la cuántica desafía este maravilloso principio matemático.

Sigue leyendo

El Arte de la Química y viceversa

Después de un pequeño parón, en el que he podido leer opiniones contra la Ciencia y el aparente mundo individual y sectario en el que la colocan, vengo con una entrada en la que se vuelve visible la unión entre Ciencia y Bellas Artes.

En concreto, voy a hablaros del estudio de restauración que se llevó a cabo en el Reina Sofía cuando uno de los cuadros más representativos de nuestro país pudo llegar a tierras españolas. Normalmente, los trabajos de restauración están dirigidos y llevados a cabo por profesionales del Arte pero ¡todo es química! tanto las técnicas y métodos analíticos como los productos usados para la restauración. Creo que sólo hay una facultad en Italia en la que se prepara a licenciados en Química para acometer dichos menesteres, pero que lo realicen profesionales de Bellas Artes no hace más que confirmar la universalidad y belleza de mi querida química. No me enrollo más.

Vamos a sumergirnos entre las capas del Guernica de Pablo Picasso, ¿qué os parece?.

Este estudio me fascinó y me ayudó a valorar muchísimo más el arte pictórico y el Arte, en general. Ya no sólo era un cuadro con un significado u otro, con una belleza extraña o cercana, un trabajo visto por encima en asignaturas de Humanidades. No, desde ese momento, mi fascinación por cada pincelada, por la consecución de cada pigmento, del acabado,…, creció y pasó a ser algo palpable, la representación más bella que, usando químicos naturales y de síntesis, un artista pudo plasmar. Espero que el estudio os guste y miréis las obras desde otro punto de vista más.

Historia

Pablo Picasso recibió un encargo por parte del Gobierno de la II República en 1937. Se iba a celebrar una exposición internacional en París y su obra sería un cartel destinado a exponerse en el Pabellón Español. Al principio, Picasso no estuvo entusiasmado con la idea aunque realizó diversos bocetos preparatorios para realizar un alegato contra la barbarie, el terror y la guerra (sin que ninguno de los elementos posteriores del cuadro formaran parte de ellos), pero un acontecimiento cambió su forma de pensar.

Ese motivo no fue otro que la noticia de los bombardeos efectuados por la aviación alemana sobre la villa vasca (del mismo nombre), conocidos por el artista a través de las dramáticas fotografías publicadas en L’Humanité y otros diarios franceses. Estos luctuosos hechos dieron forma al Guernica que conocemos: concebido como un gigantesco cartel, testimonio del horror que supuso la Guerra Civil Española, así como la premonición de lo que iba a suceder en la II Guerra Mundial.

La sobriedad cromática, la intensidad de todos y cada uno de los motivos y la articulación de los mismos, determinan el extremado carácter trágico de la escena, que se iba a convertir en un emblema de los desgarradores conflictos de la sociedad de nuestros días.

guernicacuadro

Aunque el cuadro era propiedad del Estado Español, Picasso decidió que quedara bajo la custodia del MoMA de Nueva York hasta que finalizara el conflicto bélico.

En 1958, renovó el préstamo por tiempo indefinido hasta que se estableciesen las libertades democráticas en España. Finalmente, el Guernica llegaría a nuestro país en 1981, año en el que se analiza de forma exhaustiva. Este proceso es el que vamos a ir desgranando a lo largo de la entrada.

Informe sobre el estado de conservación

El estudio se realizó para poner de manifiesto el estado de la obra y las consecuencias de un hipotético traslado (otro más a la lista) de la misma.

En primer lugar, se hace una referencia especial a las intervenciones que ha sufrido, tanto las de montaje y desmontaje llevadas a cabo como consecuencia de los diversos traslados, como las de consolidación y restauración que ese mismo devenir hicieron necesarias.

A continuación se procede a realizar un análisis del estado material de la obra, tanto por lo que respecta a una concisa descripción de la misma, basada en análisis químicos y radiográficos, como a su estado de conservación.

Intervención en la obra

En el año 1957, en el MoMA se restaura para tratar un problema con el reverso. Al variar la temperatura, la cera presente en el lienzo se licuaba y salía por la parte pintada.

Por ésto y el proceso de enrollamiento y desenrollamiento en su traslado (algo que no se debe hacer nunca), los conservadores tomaron la decisión de someter al cuadro a un proceso de restauración consolidando toda la superficie, ya que presentaba problemas y daños generalizados: desprendimientos de color, arrugas y grietas. Para ello, se trató el reverso del cuadro con una mezcla de cera y resina fundidas para fijar el color.

Además, se colocaron bandas de tela, unidas también al soporte original con cera-resina fundida para proceder de nuevo al tensado del lienzo sobre el bastidor.

En 1962, se limpió la superficie pictórica con agua destilada (procedimiento en desuso en la actualidad puesto que muchos pigmentos son de origen natural y solubles en agua) y se barnizó con PARALOID-72, un barniz acrílico que cambia el indice de refracción evitando que los pigmentos, al incidir la luz en ellos, amarilleen.

Dos años después, 1964, se vuelve a consolidar el reverso con papel japonés y poliacetato de vinilo para repasar fisuras en la obra.

En 1974, la obra sufre un ataque con pinturas. Aparecen frases insultante en una longitud de 75 cm. Se empleó xileno como disolvente y se retocó con pintura acrílica. La parte afecta, además, fue barnizada con PARALOID-70.

En 1981, el Guernica llega a España y se le somete al estudio que vamos a ir desgranando y completando con datos posteriores, obtenidos en 1997, último gran estudio de esta obra.

Descripción material de la obra

Pintura sobre un lienzo de 775 x 350 cm. clavado a un bastidor de madera con 20 crucetas unidas por cuatro tornillos cada una. El actual bastidor sustituyó al original en 1964.

Análisis químicos

Una técnica básica como la microscopía óptica proporciona información sobre la morfología de partículas y estructuras, bien sobre las capas de pintura (a la hora de identificar pigmentos o caracterizar la superposición de capas) como para ofrecer información sobre el soporte.

La identificación de las fibras del soporte se realiza mediante el examen microscópico de muestras tomadas en ambos sentidos de la tela. Se identificaron:

  • Lino (como componente de las fibras dispuestas en el sentido horizontal): por análisis morfológico como por ensayos microquímicos con el reactivo Schweitzer, el cual se obtiene por reacción in situ de amoniaco con sulfato cúprico. Se observan dislocaciones transversales o nódulos de la fibra característicos de ese material.
  • Yute (en las muestras de la posición vertical): El color magenta obtenido al realizar el ensayo de florglucina en medio clorhídrico pone de manifiesto un alto contenido de lignina de esta fibra.
  • Lino y algodón en las bandas de refuerzo colocadas en el MoMA para reforzar bordes.

En los análisis realizados en preparación y capa pictórica se han utilizado distintas técnicas

  • microscopía óptica
  • microscopía electrónica de barrido
  • espectroscopía IR por transformada de Fourier
  • cromatografía de gases.

Examen Óptico

El examen con microscopio óptico (técnica basada en la interacción de la radicación con la materia) se realiza a pequeñas muestras incluidas en una resina con base metacrilato de metilo.

Con este método se identifican algunos pigmentos, contando con la ayuda de ensayos microquímicos. Una primera observación al microscopio permite comprobar que el lienzo fue preparado con una capa de cola animal sobre la que se aplicó imprimación blanca.

Se analizaron un total de ocho muestra (M1-M8) del lienzo.

DSC_0013

En la muestra M1, se observa una superposición correspondiente al negro de la pezuña del toro y se pone de manifiesto la existencia de una zona translúcida de 30µ, una capa blanca con un espesor entre 30-110µ, una capa intermedia grisácea de 30-60µ y una capa negra de 15-20µ. Con ésto, estamos “viendo” las pinceladas de Picasso.

Estratigrafía7(estratos de pinceladas en la M7)

En las estratigrafías de todas las muestras (M1-M8) se observa esa capa translúcida de espesor variable y naturaleza orgáncia que estaría situada en contacto con el lienzo.

La tinción microquímica con FOCUSINA (Fusina) (rosanilina + pararojahilina), que es un polvo verde soluble en agua y alcohol, revela la presencia de esa cola animal, pues el reactivo genera un compuesto rojo con las proteínas. Por tanto, esa primera capa translúcida queda definida como la COLA ANIMAL que recubre todo el cuadro.

No obstante, en la M3 no sólo hay presencia de esa cola animal, sino que la microquímica sólo cubre una parte de esa muestra acotada, parte que corresponde al uso de un producto para la consolidación de la capa pictórica. El cuadro revela una de sus anteriores restauraciones.

En la M4 (en la zona derecha de la flor) también se aprecia esa capa de consolidación y una sóla capa blanca de 125-170µ. Aunque, como veremos más adelante, esta muestra revelará una sorpresa.

muestra4

(capa blanca de la M4)

En la M6, gris (debajo de la pezuña del toro), la microscopía óptica muestra la superposición de capas: la de cola animal de 25-50µ, capa blanca de 35-150µ, una gris oscura de 25-85µ, otra clara de 0-50µ y una finísima capa negra de 10µ. Además, de observarse una de las fisuras que sufrió la obra.

Ahora bien, para caracterizar la superficie de la muestra se recurrió a la Espectroscopía Electrónica de Barrido

Concretamente, se trabaja a un microscopio electrónico acoplado a un Detector de Rayos X (DRX). Por dispersión de energía, este examen permite un análisis puntual muy preciso de los elementos que forman parte de la muestra para completar los datos obtenidos con la técnica analítica anterior. Las imágenes correspondientes a la retrodispersión de electrones permite analizar los distintos elementos presentes en las partículas.

Por ejemplo, en la M6 se pudo apreciar con total nitidez la ruptura en la capa pictórica a la que nos referimos con anterioridad.

IMG_20140704_124207[1] IMG_20140704_124237[1](microscopías electrónicas de la M6)

Yendo a los resultados globales, en la capa blanca se constató la presencia de

  • BaSO4
  • 2PbCO3·Pb(OH2) blanco de plomo
  • CaCO3
  • trazas de SiO2 procedentes de la presencia de CaS04·2H2O

(capa blanca)

En la capa gris superior, se identifican azufre y calcio del sulfato cálcico, Zinc, blanco de Zinc (ZnO), el fósforo de Ca3(PO4)2 propio de resto de huesos y bario asociado a BaSO4.

capagris

Y en la negra: Ca3(PO4)2, identificándose así el negro de huesos.

¿Recordáis la muestra M4? Pues, con ésta técnica, se observa que son dos capas diferenciadas y no una sólo:

IMG_20140703_135719

En la inferior, están presentes los compuestos globales, aunque el CaSO4·2H2O está enmascarado por la presencia de azufre en el espectro.

En la superior, NO se detecta presencia de plomo, pero sí la de zinc (blanco de zinc) y del óxido de aluminio.

En la M8, se pone de manifiesto la diferencia entre la preparación y la capa pictórica.

IMG_20140703_135622

Lo que varía son las proporciones presentes en los diferentes pigmentos naturales blancos y negros para conseguir el resultado cromático deseado.

Los pigmentos naturales son orgánicos e inorgánicos y para obtener la información de la estructura molecular se emplea la Microespectroscopía IR por transformada de Fourier.

Tranquilos, explico:

La espectroscopía IR se basa en el hecho de que los enlaces químicos de las sustancias tienen frecuencias de vibración específicas, que corresponden a los nieveles de energía de la molécula. Si la molécula recibe luz con la misma energía de esa vibración, entonces la luz será absorbida si se dan ciertas condiciones.

Para que una vibración aparezca en el espectro IR debe someterse a un cambio en su momento dipolar durante la vibración. Las frecuencias vibracionales de resonancia son determinadas por los modos normales correspondientes a la superficie de energía potencial del estado electrónico estándar. Cada grupo funcional, asociado o no a otros, se verá caracterizado con esta técnica de determinación estructural.

En la espectroscopía IR se transmite un rayo monocromo a través de la muestra y se registra la cantidad de energía absorbida. Repitiendo esta operación en un rango de longitudes de onda de interés, se puede construir un gráfico. Esta técnica funciona casi exclusivamente en enlaces covalentes y se usa mucho en química orgánica.

Las muestras sólidas se preparan mezclando una cierta cantidad de muestra con una sal altamente purificada (KBr). Esta mezcla se tritura y se prensa con el fin de formar una pastilla por la que pueda pasar la luz, debe ser translúcida.

Por transformada de Fourier, se guía la luz a través de un interferómetro. Después de pasar por la muestra, la señal medida da el interferograma. Se origina un espectro idéntico al de la espectrometría IR convencial, sólo que ésta es dispersiva: el haz se divide en dos y, antes del detector, pasa por un separador procedente -de manera alterna- de la muestra y la referencia).

En el interferograma de la capa de preparación se observan las bandas de

  • BaSO4 a 1176, 1083, 983, 634 y 611 cm-1
  • 2PbCO3·Pb(OH2) a 3541, 1409 y 681 cm-1

IMG_20140703_135254

Como podréis apreciar, el IR de la muestra engloba tanto el espectro correspondiente al sulfato de bario como al blanco de plomo, superpuestos individualmente.

En el de la muestra tratada durante el proceso de consolidación se aprecia una banda de tensión característica del CO a 1710 cm-1, que es propia de la cera de abeja (con resina natural) utilizado.

IMG_20140703_135133

(los grupos funcionales tienen, como dijimos anteriormente, unas determinadas vibraciones y siempre saldrán en un rango determinado del espectro IR. En el supuesto de encontrarnos con un ácido, a la señal de C=O se vería una banda ancha característica de los -OH. Por ésto, el espectro de IR es muy útil para la caracterización de compuestos, sobre todo orgánicos)

Además, el espectro IR de la capa exterior incolora presenta bandas características del recubrimiento acrílico aplicado como barniz protector.

IMG_20140703_135048

Para una comprobación de los resultados, se recurre a

Cromatografía de gases

Una técnica analítica que requiere la separación y cuantificación de los compuestos químicos individuales. En ella, la muestra se volatiliza y se inyecta en la cabeza de una columna cromatográfica y se miden los tiempos de retención. La elución se produce por el flujo de una fase móvil que es un gas inerte, y a diferencia de la mayoría de los tipos de cromatografía, la fase móvil no interacciona con las moléculas del analito; su única función es la de transportar el analito a través de la columna.

Las muestras del Guernica, en concreto, se derivatizaron con una metilación directa (adición de Meth-Prop II en benceno)  puesto que se analizan los ésteres metílicos de los ácidos grasos. Se obtienen señales importantes correspondientes a:

  • ácido azelaico (A)
  • ácido palmítico (P)
  • ácido esteárico (S), señales que nos indican la presencia de un aceite secante que por la proporción P/S nos lleva a un aceite de lino como aglutinante.

GC1guernica

Para el análisis de la cera, la identificación fue de los ácidos grasos con átomos de carbono pares (14:00 y 32:00) y por los hidrocarburos impares C23-C33. Indica que es cera de abeja a la que se le añadió una proporción de resina triterpénica.

CGresina(cromatograma de la muestra en el que se destaca el rango correspondiente a los compuestos orgánicos)

Informe Final

¿Sabéis que se concluyó en el informe sobre el estado del Guernica a fecha de 1981?

Que presentaba un estado lamentable y se prohibía su movilización, enrollamiento y posibles viajes, puesto que era muy sensible (a la situación se le suma su gran área) a las variaciones de humedad, vibraciones y golpes.

Las condiciones a las que debía conservarse fueron fijadas en

  • humedad relativa del 50% 2%
  • temperatura 20 2 ºC
  • iluminación por debajo del los 150 lux

Y que necesitaba una nueva restauración para:

  • eliminar el exceso de cera.
  • sujetar el lienzo al bastidor con un sistema de antivibración
  • reponer el material en algunas zonas
  • limpiar los pelos presentes en la parte externa del cuadro.

Los resultados del último gran estudio que se hizo en 1997 y que complementa el informe del 81, aconsejaba “desde el punto de vista de su conservación, no debe volver a exponerse la obra a ningún tipo de movimiento o traslado fuera de las salas del Museo”.

A día de hoy (creo no equivocarme), los permisos para la restauración que necesitaría no están aprobados. Ojalá, no pase mucho tiempo hasta que el Guernica pueda volver a mostrarse en un buen contexto y en perfectísimas condiciones.

Y hasta aquí el viaje por el interior de un cuadro, ¿os imagináis sumergiros así en una obra de renombre y poder visualizar todo su proceso de creación? Cada pigmento, cada capa,…

Posiblemente, otro día, hablemos de esos colorantes naturales que, gracias a la química, llenaron y llenan nuestra Historia de color.