Archivo de la categoría: biofísica

Life is life, naná nanana

Parece ser que la vida es un hecho en nuestro universo.  Y como seres, vivos, curiosos tenemos tendencia a preguntarnos, ¿cómo se originó la vida?

Dejando de lado las respuestas triviales, o la monorespuesta trivial, es todo un desafío científico responder a esta pregunta y a lo largo de los años la ciencia ha intentado entender el origen de la vida.  Por el momento, la cuestión no ha llegado a una solución satisfactoria, pero estamos cada vez más cerca de entender cómo surge la vida.

Es evidente que el problema del origen de la vida no se puede atacar desde un solo frente.  La vida es una cosa compleja, muy compleja, y en ella se conjugan razonamientos biológicos y químicos.  Pero también hay hueco para la física y las matemáticas.

En esta entrada lo que pretendo es dar una lista de modelos matemáticos y físicos que juegan un papel preponderante en el estudio del origen de la vida.  La lista no será completa, estos son simplemente los modelos que yo conozco o que yo he entendido en algún momento de mi vida. Espero que con las referencias dadas todos los que estéis interesados podáis profundizar en el estudio de este apasionante tema.

Al fin y al cabo, life is life.

Votar en los Premios Bitacoras.com Sigue leyendo

Simetría, a veces, mejor rota

En este blog hemos hablado en alguna ocasión de la importancia de las simetrías.  Las simetrías de las leyes físicas son fundamentales por muchos motivos, por ejemplo:

  1. Nos ayudan a encontrar cantidades conservadas como la energía, el momento, la carga eléctrica, etc.
  2. Definen las interacciones, es decir, la forma en la que los sistemas interactúan entre si viene determinada por razones de simetría frente a algunas transformaciones admitidas de los objetos matemáticos con los que representamos las magnitudes físicas de interés.

Pero aún más interesante, si cabe, es que las simetría no solo es útil y fructífera cuando están presentes, hay muchas ocasiones en las que cuando una determinada simetría se rompe crea nuevos fenómenos físicos.  Hay muchos ejemplos, desde la obtención de masas por parte de algunas partículas según el mecanismo Higgs hasta el fenómeno de superconductividad, hay toda una plétora de fenómenos físicos que se pueden asociar a roturas de simetrías (y a las transiciones de fases asociadas).

Sin embargo, si miramos a nuestro alrededor no solo en física es importante hablar de simetría o de rotura de simetrías.  Estos conceptos posiblemente sean de los más profusamente empleados en ciencia y muchas de las preguntas abiertas en la actualidad están asociadas a simetrías y sus roturas.  En esta entrada discutiremos brevemente acerca de este hecho y de los campos, no propiamente de la física, en los que las cuestiones relativas a la simetría o su rotura son fundamentales.  No será una entrada exhaustiva, solo comentaré las cosas que me resultan curiosas y sorprendentes. El único objetivo es que, por si alguien no había caído, la simetría es importante más allá de la física y que tenerla presente siempre ayuda a la hora de encontrar, definir y solucionar problemas.

Sigue leyendo

La expresión génica vista por un físico III: Interpretación de probabilidades. Resultados

Llegamos ya a la última entrada de la serie, que viene precedida por:

Dogma central de la biología. Enfoque determinista

Introducción al enfoque estocástico

Hemos visto que al aplicar el planteamiento estocástico de Gillespie al mecanismo de expresión génica se modela un conjunto de macromoléculas contenidas en una célula en relación a la probabilidad que tienen de chocar y reaccionar entre sí. Así, el hecho de que una reacción concreta tenga lugar se puede descomponer en dos sucesos de naturaleza aleatoria con sus respectivas probabilidades:

1. Tras un tiempo  sin reacciones, se produce una reacción cualquiera

\boldsymbol{P_1=v_0e^{-v_0\tau}dt}

2. La reacción que se produce es concretamente la reacción

\boldsymbol{P_2=\dfrac{v_\mu}{v_0}}

El objetivo del modelo de Gillespie es obtener la información que nos diga qué reacciones se producen y en qué instante. El resultado de aplicar el método debe ser algo parecido a lo siguiente:

Sigue leyendo

La expresión génica vista por un físico II: Introducción al tratamiento estocástico

Otra entrada sobre el tratamiento de la expresión génica por parte de Pedro Fernández (@pedrokb_vr)

En la entrada anterior vimos cómo modelar matemáticamente el mecanismo por el cual un gen se traduce a una proteína basándonos en el enfoque determinista, así como los dos principales errores que se cometen al aplicar ese modelo: el uso de variables continuas y la no consideración de la aleatoriedad propia del proceso.

La expresión génica vista por un físico I

Para solucionar el problema al que habíamos llegado se introduce el cálculo de probabilidades de sucesos aleatorios en el enfoque estocástico. Empecemos desde abajo.

Sigue leyendo

La expresión génica vista por un físico I

En esta ocasión tenemos el placer de iniciar unas entradas relacionadas con el campo de la biofísica. En concreto en ellas se nos hablará de cómo estudia un físico la expresión génica, es decir, el mecanismo por el cual un gen se traduce a una proteína.  Estas entradas están escritas por Pedro Fernández (@pedrokb_vr)

Esta es la primera de una serie de entregas en el campo de la biofísica. En ellas discutiremos  despacito y con buena letra el mecanismo por el que se expresa un gen desde el punto de  vista físico, haciendo especial hincapié en la aleatoriedad inherente del proceso. Vamos a  ello…

El ADN se copia a ARN y el ARN se traduce a proteínas. Estos son los pasos básicos de la expresión de un gen en proteínas.

Sigue leyendo