Archivo de la etiqueta: interferencia

La foto 51 – Del patrón de difracción a la estructura del ADN

001

Esta es la foto 51, una foto tomada por Rosalind Franklin y su ayudante Raymond Gosling con la que se pudo discernir el secreto de la estructura del ADN.  El modelo fue propuesto por Watson y Crick gracias a que tuvieron acceso a esta foto en una jugada un tanto criticable.

Esta entrada tiene por objeto describir cómo se puede deducir la estructura del ADN, una doble hélice, a partir de esa foto.  La historia asociada no deja de ser interesantísima y es una obligación dedicar unos minutos a conocerla y a homenajear a la mujer que la hizo posible, Rosalind Franklin.  Os dejo un vídeo donde se hace un breve esbozo de su vida y obra:

Y aquí el vídeo de lo que vamos a desarrollar en esta entrada, la deducción de la estructura del ADN a partir de la foto 51:

Si al acabar esta entrada crees que molaría tener un detalle con este vuestro humilde autor me conformaría con tener vuestro voto en los premios bitácoras para el podcast @Los3_Chanchitos.  Este es un podcast de ciencia y cultura en general (3chanchitos.es), con mejor o peor humor, del que formo parte.  Si deseas votar en señal de infinita gratitud solo tienes que pulsar aquí abajo:

Votar en los Premios Bitacoras.com

Basta de peticiones, vayamos al lío.

Sigue leyendo

Anuncios

Así se liga una onda gravitacional con LIGO. Para todo el mundo.

Pues a la espera, hoy 11 de febrero de 2016, de la rueda de prensa de LIGO en la que todos confiamos en que anuncien la primera detección directa de una onda gravitacional vamos a explicar en qué se basa el mecanismo de detección.

Para saber sobre Relatividad General:

Relatividad General — 100 años

Sobre ondas gravitacionales:

La que se avecina. Las ondas gravitacionales 1  —  Aquí discutimos el origen “matemático” de ondas y ondas gravitacionales.

La que se avecina. Las ondas gravitacionales 2 — En esta entrada vamos más a la idea que hay detrás del empeño por detectar ondas gravitacionales.

Interferencia de ondas

Una onda es una perturbación que se propaga y es periódica, al menos en el caso más simple, en espacio y tiempo.  La onda llega con la misma amplitud para intervalos de tiempos iguales y distancias al foco emisor iguales.  Hay casos más complicados pero con eso nos servirá.

La idea que tenemos todos en la cabeza más o menos es algo así:

circ1

Se produce una perturbación, por ejemplo en la superficie de una piscina, y se propaga una onda desde el foco emisor.

Ahora bien, si tenemos dos focos emisores, supongamos que tenemos la misma frecuencia en el perturbación, se generan dos ondas.  Pero las ondas no colisionan.  Lo que hacen las ondas es interferir.  Si las ondas se encuentran en regiones donde llegan con la máxima amplitud los efectos se suman, hay mayor intensidad. Si las ondas llegan a un punto en el que una de ellas llega en su máximo y la otra en su mínimo, entonces se contrarrestan.  Algo así:

circ4

Ahí se ve la superposición de ondas y como en unos puntos o regiones se refuerzan y en otras se cancelan.  Hemos generado un patrón de inteferencias.

¿Qué es LIGO?

LIGO viene de LASER INTERFEROMETRY GRAVITATIONAL (wave) OBSERVATORY,  observatorio de ondas gravitacionales por interferometría láser.

Un láser no es más que luz, una onda electromagnética, que tiene unas propiedades muy adecuadas para hacer interferencias.  Lo primero es que casi que es de un color puro, o mejor dicho, la frecuencia de la onda electromagnética se conoce muy bien.  Eso mola porque las interferencias salen mejor si cruzamos ondas de la misma frecuencia.  Además, los láseres actuales son de alta potencia, podemos tener mucha energía en el láser y eso ayuda a estudiar los fenómenos de interferencia.

Lo que hacemos es generar el láser, este haz de onda electromagnética se divide en dos caminos gracias a espejos especiales que dejan pasar la mitad de la onda y la otra la reflejan.  Así podemos dividir el haz y enviarlo en dos direcciones distintas.

En LIGO los láseres recorren brazos de 4km de largo.  Al final del camino rebotan en un espejo que los vuelve a enviar por donde han venido.  Los dos haces llegan otra vez al espejo divisor de haz del principio y se recombinan.

IFO

Es en esa recombinación donde se produce el patrón de interferencia.

Una cuestión importante es que el patrón de interferencia depende del camino total recorrido por cada uno de los haces. Variando el camino recorrido, la longitud de los brazos de LIGO variará el patrón de interferencia. Los brazos de LIGO que tienen este aspecto:

Aerial5

virgo1

Por lo tanto, en LIGO están permanentemente mirando el patrón de interferencia del interferómetro láser.

¿Ondas gravitacionales?

Como hemos comentado en distintas entradas anteriores, una onda gravitacional lo que hace es estirar y comprimir distintas direcciones del espacio.  En tres dimensiones es algo así en el caso más simple:

gw-waves-wave

Visto desde frente lo que veríamos es que una dirección se estira y la otra se contrae periódicamente:

GravitationalWave_PlusPolarization

 

Eso es el propio espacio ondulando, una maravilla. Una predicción de la Relatividad General.

¿Qué pasa en LIGO cuando pasa una onda gravitacional?

Pues como os podéis imaginar no pasa nada apreciable.  Las ondas gravitacionales seguro que llevan toda la vida pasando por aquí (en caso de existir) y no hemos notado nada.  Pero el cacharro ha de servir para algo y para lo que sirve es para notar esas dilataciones y contracciones del espacio.

De forma exagerada lo que pasa en LIGO durante el tránsito de una onda gravitacional es algo así:

giphy

Los brazos se alargarían y se acortarían en distintas direcciones.

Pero… ¡Un momento!  Eso tendría que producir un cambio en el patrón de interferencia dado que están cambiando las longitudes recorridas de los haces láser.  Y en efecto, eso es lo que busca LIGO, detectar ese movimiento de los brazos del interferómetro.

Ojito, lo que buscan ahí es una variación que es comparable a una distancia de 1/10.000 veces el tamaño de un protón.  Eso en metros es encontrar variaciones de:

0.0000000000000000001 metro  (No los cuentes, son 18 ceros)

De esas variaciones de distancias estamos hablando.  Si se ha conseguido es un orgullo y una satisfacción. Estamos a la espera del anuncio.

Nos seguimos leyendo…

Gato, no te escondas que te voy fotografiar igual

scaredy-cat-660x350Zeilinger y su gente han conseguido rizar el rizo cuántico.  En esta ocasión han logrado fotografiar un gato, la figura de un gato, sin que los fotones que llegan a la placa fotográfica hayan tenido contacto con él en ningún momento.

Este experimento es interesante por varios motivos.  Para empezar porque es puramente cuántico, no hay forma de dar una explicación clásica basada en ondas electromagnéticas del mismo.  Además, se basa en dos de los hechos cuánticos por antonomasia, la superposición cuántica y el entrelazamiento, dos de las piedras angulares que, parafraseando a Feynman, continene todos los misterios de la mecánica cuántica.  (Entiéndase aquí por misterios los hechos cuánticos que están alejados de cualquier experiencia cotidiana de la que podamos echar mano).

Hoy se publica en la revista Nature el artículo:

Quantum imaging with undetected photons (Nature) doi:10.1038/nature13586

del que hay una versión libre en arXiv:

Quantum imaging with undetected photons

En esta entrada vamos a dar los ingredientes necesarios para entender el experimento y explicaremos el mismo de una forma pormenorizada.

He de agradecer a @aberron que haya llamado mi atención sobre este resultado que de otro modo se me hubiera pasado con total seguridad. No dejes de leer su entrada acerca del experimento para tener una visión general, directa y entendible.  Entrada: Más difícil todavía, cómo fotografiar al gato de Schrödinger sin verlo.

Sigue leyendo

La soledad del fotón

Una entrada anterior ha suscitado cierta polémica sobre si un determinado efecto era clásico o cuántico. Si el uso de la cuántica no era más que un capricho para parecer más guays.

La sensación que me ha dado la discusión, y esto es una apreciación personal, es que hay ciertas reticencias a que la cuántica sea la que marque las normas. No entiendo el porqué. La cuántica ha superado todas las pruebas experimentales durante su siglo (aproximadamente) de existencia.  Y aquí deberíamos insistir en que los experimentos se diseñan generalmente para mostrar que la cuántica se equivoca. Y hasta el momento nadie ha conseguido un resultado positivo en este sentido.

Por eso quiero dedicar unas cuantas líneas a aclarar ciertas confusiones que pueden generarse con estos ejemplos experimentales o con las discusiones que se presentan a la luz de los mismos.

La entrada en cuestión:   Dime fotón, ¿de dónde vienes?

Y para que conste… A mí los clásicos me encantan.

Sigue leyendo

La vaca gravitatoria

Muchas veces hemos dicho y leído que en nuestra escala las leyes cuánticas y gravitatorias prácticamente no se necesitan una a la otra.

En esta entrada vamos a explicar un experimento llevado a cabo por Colella, Overhauser y Werner en 1975 que pone de manifiesto un sutil efecto donde ambas conviven y producen efectos observables.  A este experimento se le denomina “Experimento COW” (cow= vaca en inglés).

El artículo en el que describieron este experimento y sus resultados lo puedes encontrar en el siguiente enlace:

Observation of gravitational induced quantum interference

Sigue leyendo